xvideo xx 665
xvideo xx 661
xvideo xx 631f
xvideo xx 161
xvideo xx 661f
xvideo xx 661f
xvideo xx 665g
xvideo xx 3665f
xvideo xx 105f
TCSSA  DTCSSA  TCSSB  DTCSSB  

NTL  t < t′  t_{min} ≤ t′ ≤ t_{max}  t′ ∈ {t_{1}, t_{2},⋯, t_{N}} (0 < t_{i + 1} − t_{i} < t_{1})  t′ ∈ {t_{1}, t_{2},⋯, t_{N}} 
NCP  t′ − t + 1  1  N  1 
NRP  $\frac{{t}^{\prime}t+2}{2}$  1  $\frac{N+1}{2}$  1 
SSS  (t′ − t + 1) log q  log q  N log q  log q 
BCS  log q  log q  $\frac{N+1}{2}logq$  (n + 1) log q 

Notation  Meaning 

n  Number of participants 
t  Threshold value 
P_{i}  Participant i 
P  Participant set, P = {P_{1}, P_{2},⋯, P_{n}} 
q  A big prime number randomly chosen by the dealer, q > n 
S  Domain of the secret, S = GF(q) 
s  Secret, s ∈ S 
S_{i}  Domain of participant P_{i}’s secret shadow, S_{i} = GF(q) 
s_{i}  Participant P_{i}’s secret shadow, s_{i} ∈ S_{i} 
T  Domain of potential threshold 
t′  New threshold in DTCSSA scheme 
N  Number of potential thresholds in DTCSSB scheme 
h(x)  A polynomial 
h(x_{i})  Value of polynomial h(x) in a given x_{i} 
${y}_{i}^{j}$  Participant P_{i}’s j^{th} advance secret shadow 
ψ_{i}  Participant P_{i}’s secret shadow updating function 
f(r, s)  A twovariable oneway function 
deg(⋅)  Operator is used for computing the degree of the polynomial 
[x^{k}]  Coefficient operator. If h(x) = ∑_{i≥0}a_{i}x^{i}, then [x^{k}] h(x) = a_{k}. 
[⋅]_{k}  Polynomial operator. If h(x) = ∑_{i≥0}a_{i}x^{i}, ${\left[h\right(x\left)\right]}_{k}={\sum}_{i=0}^{k1}{a}_{i}{x}^{i}$. 
Mahaboob Basha
@shaikbasha1996

May 17  
Virat kohli pic.twitter.com/db6HTJGCCz


Mahaboob Basha
@shaikbasha1996

May 17  
Virat kohli pic.twitter.com/db6HTJGCCz

